Haugh, Jason M. 2002. Biophys. J. 82:591-604.

On p. 594, Table 1 is aligned incorrectly. The correct Table 1 is printed below.

TABLE 1 Dimensionless model parameters

Parameter	Definition*				
	Two-state		Regulated supply	Brief description	Estimated range†
К		k _{RE} /D		Enzyme reaction rate constant	$10^{-3} - 10^3$
$\eta_{ m R}$		$s^2 n_R$		Activated receptor density	$10^{-8} - 10^{-1}$
$\eta_{ ext{RE}}$		$s^2 n_{RE}$		Receptor-enzyme density	$10^{-8} - 10^{-1}$
$ au_{ m RE}$		Dt_{RE}/s^2		Receptor-enzyme lifetime	$10-10^7$
Da	$(k_a + k_i)s^2/D$		$k_c s^2/D$	Bulk membrane rate constant	$10^{-7} - 10^{-1}$
β	0		$(n_{RT}/n_R) k_{RT}/s^2 R_{T,0}$	Enhancement of substrate supply	No estimate

^{*}See Fig. 1 for illustrations of the various rate processes.

On p. 595, Eq. 14 is incorrect. The correct Eq. 14 is:

$$\alpha = \kappa \frac{\Psi_{ss}(1)}{\bar{\Psi}_{ss}} + \frac{8}{\pi \tau_{RE}} \left[1 - \frac{\beta Da^*}{\kappa (1 + \beta \eta_R)} \right] \times \int_0^\infty \frac{\left[1 - e^{-(\lambda^2 + Da^*)\tau_{RE}} \right] (\lambda^2 + Da^*)^{-2} \lambda \, d\lambda}{\left[J_0(\lambda) + \frac{2\pi \lambda J_1(\lambda)}{\kappa} \right]^2 + \left[Y_0(\lambda) + \frac{2\pi \lambda Y_1(\lambda)}{\kappa} \right]^2}.$$
(14)

On p. 598, Eq. 17 is incorrect. The correct Eq. 17 is:

$$\frac{\bar{n}_{S^*}}{n_{S,tot}} = \frac{k_a + k_{RE}^{eff} n_{RE}}{k_a + k_i + k_{RE}^{eff} n_{RE}} = \frac{\frac{k_a s^2}{D} + \alpha \eta_{RE}}{Da + \alpha \eta_{RE}}.$$
(17)

On p. 600, Eq. 18 is incorrect. The correct Eq. 18 is:

$$\frac{\text{rate}}{R_{\text{T,0}}} = \alpha \eta_{\text{RE}} \bar{\Psi}_{\text{ss}}; \ \bar{\Psi}_{\text{ss}} = \frac{1 + \beta \eta_{\text{R}}}{\text{Da} + \alpha \eta_{\text{RE}}}. \tag{18}$$

[†]Parameter ranges are calculated as follows: $k_{\rm RE}$ is estimated using a $k_{\rm cat}/K_{\rm M}$ range of 10^4-10^8 (Ms) $^{-1}$ and dividing by a confinement layer of $\sim 3-10$ nm; $n_{\rm R}$ and $n_{\rm RE}$ are estimated as $1-10^6$ molecules in a $10^3-\mu{\rm m}^2$ membrane; the rate constants $k_{\rm i}$, $k_{\rm c}$, and $t_{\rm RE}^{-1}$ are given a range spanning $0.01-100~{\rm s}^{-1}$; other estimates are s $\sim 3-10$ nm, D $\sim 0.1-1~\mu{\rm m}^2/{\rm s}$.